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S U M M A R Y  
The performance of storage hierarchies is an important problem in modern computer systems. This problem 
is studied here and an analytical method is developed to evaluate the memory sizes in "page on demand" 
systems for various page replacement procedures. 

The first part of the study is devoted to a fundamental description of the statistical characteristics of 
program traces. The second part describes stochastic models, which provide the possibility to evaluate the 
operational behaviour of the storage system due to the statistical properties of the trace. 

The method is applied to a real situation of virtual storage in an operating system. The theoretical results 
agree excellent with results obtained by measurements. 

1. introduction 

The evaluation o f  operational  characteristics o f  storage hierarchies is of  great importance 

in computer  design. In  the present study a number  o f  basic points concerning storage 

hierarchies will be analysed. 

The simplest fo rm of  storage hierarchy, i.e. a two level system, is considered, but  the 

methods to be developed are also applicable to more  complicated hierarchies. A C P U  

(central processing unit) accesses a local store (LS) with a capacity o f  b pages during the 

execution o f  programs,  which need altogether v > b separate pages. The last ones are 

stored in main  store (MS) and t ransported to LS on demand.  

MS v pages [ 

I 
[ LS b p a g e s  [ 

I 

Figure 1. 
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The behaviour of this system under various replacement procedures is investigated below. 
For a comprehensive description of these procedures see [1], [2], and [3]. 

The performance of the storage hierarchy depends on 
i. the replacement procedures; 

ii. the statistical properties of the program traces; 
iii. the capacities and access times of the memories. 

The first part of this study discusses those statistical properties of the trace, which are 
relevant for the determination of the page fault probability. The concepts of concentration 
and traffic are introduced. 

The second part is devoted to the study of the LRU (least recently used), FIFO (first in 
first out) and RO (random out) page replacement procedures. For these disciplines analytical 
models are developed, which may be considered to be sufficiently close to the actual situa- 
tion; exact and approximative formulas for the page fault probability are derived for these 
models. The statistics of the trace filtered by the LS and offered to the MS is investigated. 

In Section (3.9) an example from practice is discussed, in particular, the page fault proba- 
bility and the number of page swaps are determined. The results obtained so far show that 
the present approach is very promising. 

The method developed starts from a number of assumptions. In the conclusion some 
questions and problems concerning the validity of these assumptions and other implications 
are indicated and may be subjects for further study. 

2. On the statistics of the trace 

2.1. Characterization o f  the trace 

Traces are ordered sequences of pages, every page being element of a set of v separate pages. 
If  m is the number of occurrences of a certain page in a trace containing M pages, then 

the frequency p of this page for the given trace is defined as: 

m 
- - .  (2.1) 

P = M  

The concentration c of this page for the given trace is defined by: 

c = vp. (2.2) 

By {(c) will be denoted the quotient of the number of separate pages with concentration 
not less than c in the given trace and the number v. Clearly {(c) is a nonincreasing function 
of c, 

4(0) = 1, r  = 0, (2.3) 

and ~(c) - ~(c + Ac) is the fraction of separate pages in the trace with concentration 
not less than e and less than e + Ac. 

We introduce the concept of traffic: 

~f  - I ~ ~d~(~) (2.4) Q(c) 
dc 
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is for the given trace the traffic delivered by the pages with concentration not less than c. 
F rom (2.2), (2.4) and 

dO(c) = - c d~ (c), (2.5) 

it follows immediately that Q(0) = 1. 

Let c be a non-negative stochastic variable with distribution function 

F(e) %r Pr{c < c}, (2.6) 

and suppose that 

F ( 0 + )  = 0 and E(c)= 1; (2.7) 

F( . )  is assumed to be continuous f rom the left. 

I f  we take 

r = 1 - F(c), (2.8) 

then 

- jc~ 7d(1 - F(r)),  Q(0) = E ( c )  = 1. (2.9) a(c) 

Consequently, as far as the concentrations of  the various types of  pages in a given trace 

are concerned, it suffices to specify the distribution F(c) with mean equal to one. 

We discuss a few examples. 

Example 2.1. There are 120 separate pages, so v = 120, of  which, for a given trace, 20 ones 
have each a frequency p = 0.04 and the remaining 100 pages each have frequency 0.002. 
Consequently, for this trace the concentration c has only two values, viz. 4.8 and 0.24, and 

1 - F(c) = ~(c) = 1 for c < 0.24, 

- ~ 0.24 < - ~  ,, = c < 4.8, 

= 0  ,, 4.8 = < c ,  
whereas 

Q ( e ) = I  for  e < 0 . 2 4 ,  

= 0 . 8  ,, 0 . 2 4 < c < 4 . 8 ,  

= 0  ,, 4.8 < c .  

The graphs for ~(c) and Q(c) are given in Figure 2. 

In this example 80 ~ of  the traffic is originated by 20 ~o of the pages (those with c = 8), 
the remaining 20 ~o of the traffic items forms 80 ~ of the pages. 
Example 2.2. Here it is assumed that c has a negative exponential distribution, so that 
1 - F(c) = e -c, and hence 

Q(c) = f ~  e-~d~ = (c + 1)e -c. 
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Figure 2. Figure 3. 
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The graphs for these functions are shown in Figure 3 (full lines). From the curves it is 
seen that 10% of the pages has a concentration not les than 2.5 and that about 33 % of 
the total traffic is delivered by these pages. 
Example 2.3. Here we take 

and 

1 - F x ( e )  = e - 4 ~ ,  

Ql(c) = �89 + x/2c) z + 1)e -42c. 

The graphs are also shown in Figure 3. It is seen that 10 % of the pages have concentrations 
larger than 1.2; they deliver about 89 % of the traffic. 

2.2. Mixing of  traces 

Suppose two traces type 1 and type 2 with distributions Fl(c) and F2(c) for the concen- 
tration are given, these traces are composed to a single trace as follows. 

In some order the CPU chooses the successive pages to be processed from the traces of 
type 1 and type 2 until all pages of both traces have been processed. Since dFl(c ) (dF2(c)) 
is the fraction of pages with concentration e such that c < e < c + dc for trace of type 1 
(type 2), it is seen that for the resulting trace 

�89 + �89 

is the fraction of pages with concentration e (c, c + de). 
Hence for the resulting trace the distribution F3(e) is given by 

F3(c) = �89 + �89 

s o  t h a t  

Q3(c) = �89 + �89 

more generally, if the resulting trace is such that trace of type 1 is processed n 1 times and 
that of type 2 n2 times then for the resulting trace 
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n 1 n2 
F 3 ( c )  - F l ( c )  + - -  F2 (c ) ,  

nl  + n2 n~ + n 2 

nl  n2 
a 3 ( c )  = - -  a ~ ( c )  + - -  Q ~ ( c ) .  

nl  + nz n l  + n2 

(2.10) 

Similarly, the resulting distribution of the concentration c can be found if a trace is com- 

posed of a number of  traces. 

Note. I f  traces with the same distribution of concentration are mixed the resulting trace 
has also the same distribution for its concentration. 

2.3. Truncating o f  traces 

Whenever f rom a given trace certain pages are deleted, so that also the set v is diminished, 
a new trace results, a so called "truncated trace". It  is of  some interest to know the relation 
between the distributions of  the concentration in the original and the truncated trace. 
We discuss here an example showing how such a relation can be obtained. 

From the original trace with distribution F(c) of the concentration all pages with concen- 
tration less than or equal to Co are deleted. Denote by Ft(c ) the distribution for the truncated 

trace, be further 

Qo = Q(co) = o cdF(c),  (2.11) 

4o = r = 1 - F(co). 

The total number v t of separate pages, which may occur in the truncated trace, is given by" 

vt = V~o, (2.12) 

and a page with concentration e > Co and frequency p in the original trace will have a 
frequency 

P 
Pt = Qo (2.13) 

in the truncated trace. Hence, f rom (2.12), (2.13) and (2.2) it is seen that a page with con- 

centration c in the original trace has concentration ct in the truncated trace, with ct given by 

e t = 0 if c < Co, 

r 
- c i f  c > Co. ( 2 . 1 4 )  

ao 

Consequently 

P r { ~ - c t  > c } = 1  for e < e o ,  (2.15) 

1 - F ( c )  
= P r { c > c l c > c o } = -  for c > c  o . 

1 - F(co) 
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Obviously 

E ( c , Q o / r  - 

so that E(c,) = 1. 

Further 

Qt(c) - 

1 cdF(c) = Qo/~o, 
1 - F ( c o )  o 

1 - F(co) zdF(Q~162176 

1 

- Qo f Y  Q~162176 

1 
- Q(Qoc/~o) for Qoc/~o > Co. (2.16) 

Oo 

Analogous relations are obtained if the original trace is truncated by deleting all pages 

with concentration c > cl. 

3. Page fault probability 

3.1. The replacement procedures 

If  the next page to be processed by the CPU is not present in the LS, then it has to be 
brought forward from the MS to the LS and at the same time a page has to leave the LS 
to free a place in the LS for the page desired, if all b places of  the LS are occupied. 

The replacement is called: 
Random Out (RO): If  the page to leave the LS is chosen at random out of the pages present 

in the LS; 
Least Recently Used (LRU): If  the page to leave the LS is the one, which has been used 

least recently of all pages in the LS; 
First In First Out (FIFO): If  the page to leave the LS is the one whose sojourn time in the 
LS is largest of all pages present in the LS. 

In the next sections we shall analyse these replacement procedures and derive expressions 
for the page fault probability, i.e. the probability that the next page to be processed is not 
present in the LS. The analysis is performed for a trace consisting of v separate pages, 
which are assumed to be numbered from 1 to v, and for a LS with a capacity of b pages. 
We shall denote by p~ the frequency of occurrence of page i in the trace. 

The basic assumption used in the analysis concerns the sequence of pages in the trace, 
viz. it is assumed that the pages still to be processed are stochastically independent of the 
pages already processed. This assumption seems to be reasonable as a first approximation, 
particularly if the length of the string of dependent pages is smaller than b, see also con- 

clusion. 
Starting from these assumption the storage process is modelled as a vector Markov 

chain. It turns out that this chain can be analyzed completely. However, the numerical 
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evaluation of the formulas so obtained is extremely tedious, except in some rather simple 

cases. Approximation of  this vector chain by means of a simpler Markov chain leads to 
formulas, which are easy to handle and very accurate, as will be shown. 

Since the vector Markov  chain has a rather complex structure we shall first discuss the 
approximative Markov chains. The discussion of the former one is delayed to sections 3.6 

and 3.7. 

3.2. The L R U  procedure 

We consider a Markov chain with state space consisting of b + 1 states E~, E 2 . . . .  , Eb+ 1, 

see Figure 4. 

E I E 2 E 3 E b Eb+ I 

P ~ .  1-~: . 1-p., 1 - p  ,,. I ~, (~. I-p 

Figure 4. 

The one-step transition probabilities Pu are indicated in Figure 4, i.e. 

P u =  1 - p , j =  1, i =  1 . . . . .  b +  1; 

= l - p , j = i + l ,  i = 1  . . . . .  b; 
(3.1) 

= 1 - p , j = i = b +  1; 

= 0, elsewhere; 

w i t h 0 < p <  1. 

Obviously this Markov chain has a stationary distribution uj, j = 1 . . . . .  b + 1 and it 
is readily found that 

uj = p ( 1  _ p)~- l ,  j = 1 . . . .  , b; 
(3.2) 

= ( 1 - p ) b ,  j = b +  I. 

The states E 1 . . . . .  E b correspond with the b positions for pages in the local store. Suppose 
the next page of the trace, say page k, to be processed has frequency Pk in the trace and 
is not in the LS, i.e. it is in the MS, which corresponds to state Eb+ ~ in the Markov chain; 
this situation will then correspond to a transition with probability p = Pk f rom state 
Eb+ 1 to  E 1, the entrance state of  the LS. If, however, this page k was already in the LS, 

say at state E3, then a transition with probability p occurs f rom state E3 to El. 
Suppose that the next page of  the trace to be processed is not page k, so that, if at this 

moment  page k is not located in the LS but in the MS, then it stays in the MS, which 
corresponds with a transition f rom Eb+ 1 to Eb+ 1 in the Markov chain with probability 
1 - p, whereas if page k is in the LS, say at E z, then it is assumed to pass to state E 3 with 
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probability 1 - p ,  and if it is at state E b then it leaves the LS for the MS ( E b + l )  with 
probability 1 - p. 

To every page of the set of v separate pages we let correspond a Markov chain as described 
above, with p equal to the frequency of the page in the trace. Due to the structure of this 
Markov chain, a page, being processed, moves to state E 1 ; it moves one state to the right 
when it is not processed, and it ultimately leaves Eb and goes to Eb+~, i.e. to the MS, and 
consequently the page least recently used moves with the higher speed through the LS. 

Obviously, the present model of v parallel Markov chains for the description of the 
motion of the pages through the LS is an approximation of the real situation. For  the 
description of the real situation the appropriate model is a vector Markov chain. The 
main objection to the approximative model is that pages leave the LS, when there is in the 
actual situation no need to leave the LS; this is due to the fact that the v Markov chains 
act independently of  one another. The influence of this fact on the page fauIt probability 
can, however, be eliminated for the greater part, as it will be shown below. 

From (3.2) it follows that (1 - pi) b is for the stationary situation the probability that 
page number i is not in the LS. Consequently, the probability that the next page to be 
processed is page i and that it is not in the LS, i.e. page i causes a page fault, is equal to 

pi(1 -- pi)  b. 

Hence the page fault probability a is given by 

a = ~ pi(1 - p~)b. (3.3) 
i=1 

Since 1 - (1 - p~)b is the probability that page number i is in one of the states E1 . . . .  , Eb, 

it follows that for the present model 

1) 

g = E {1 - (1 -p~)~} (3.4) 
i=1 

is the average number of  pages in the LS. 

Since 

V 

~-~Pl = 1, 
i=1 

and 

( 1 - P i )  b > l - bpi, l > p i  > O, 

it is seen from (3.4) that 

g < b. (3.5) 

A result, which is intuitively clear, since as already pointed out above, the v Markov chains 
act independently of one another so that pages may leave the LS although there is no 
need for. 

To compensate this fact we replace the capacity b of  the LS by a greater (fictitious) 
one bo, with bo determined by the condition 
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v 

b = Z 1 - (1 -p~)bo, (3.6) 
i = 1  

and take in our  model  b o + 1 states in the Markov  chain instead o f  b + 1. Hence, with 

the model  so adjusted, the average number  o f  pages in the LS equals b, and the page fault 

probabil i ty e is now determined by 

= Z Pi( 1 - Pi) b~ (3.7) 
i = 1  

Obviously 

< a. (3.8) 

Let x h denote the fraction o f  the v separate pages, all with the same frequency qh, h = 1 . . . . .  

n, so that  

n n 

X h : 1, ~, vxhqh = 1, 
h = 1 h= i (3.9) 

C h = Vqh , h = 1 . . . . .  n, Pr{c  = Ch} = Xh, h = 1, . . . ,  n. 

Hence 

a = ~, VXhqh(1 - -  qh )  b : ~ C h 1 - -  Pr{c = Ch}, 
h = l  h = l  

g = ~ v  1 -  1 -  P r { e = c h } .  
h = l  

(3.10) 

Define 

b bo g 
d = - - ,  d o - , ~ = - -  (3.11) 

/3 V /3 

For  obvious reasons d will be called the compression of  the M S - L S  combination.  For  v 

sufficiently large, which is actually acceptable, we obtain f rom (3.3) 

a = ~ che-aChPr{c = ch} = E(ee-d~) ,  (3.12) 
h = l  

= ~ (1 - e-dCh)Pr{e = Ch} = 1 -- E(e-a~). 
h = l  

In  the same way we obtain f rom (3.6) and (3.7) 

= E ( e e  -a~ = ; ;  ce-d~ O~ 

d = 1 - E ( e  -d~ = 1 - e-d~ 
0 

(3.13) 

(3.14) 
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with 

Pr{e < c} = F(c) and E(e) = jo~ cdF(c), (3.15) 

where F(c) is the distribution of the concentration e for the given trace (of. 2.6). 
For given compression d and distribution F( .)  of the concentration do is found from 

(3.14) and then the page fault probability from (3.13). 
Example 3.1. (Cf. example 2.2). 
For F(c) = 1 - e -c, c > O, it follows that 

1 1 

- (1 +do)  z '  d =  1 1 + d o '  

so that 

~ =  (1 - d )  2. (3.16) 

So for d = 0.0905 it follows that c~ = 0.82. 
Example 3.2. (Cf. example 2.3). 

For F(c) = 1 - e - ' /~ ,  c >= O, it follows 

~X= 1{__  d-~ - + 1  ~ / ~ o ( 1 + ~ _  O1)el/2a~ 1 - 2  ~ 2  f~/4Ygg~ 

d =  1 2 e x/2a~ x/zc 1 - - - 7 - - -  e-Y2dY , 
2 

so that 

(3.17) 

1 d o - d - d d o  

2 

For do = 0.125 it follows d = 0.0943, so that ~ = 0.585. 
Since 0~ is the page fault probability it is seen that of  the total traffic E(c) = 1 offered 

by the trace, the part 

= I ~ ce-aOCdF(c) 
3 0  

is offered to the MS, whereas the LS handles the part 

1 - ~ = f :  c(l - ed~ 

The presence of the LS leads therefore to a demixing of the trace. In a more accurate form 
this may be stated as follows. Due to the presence of  the LS the original trace is split up 
in two traces, that handled by the MS with distribution of c given by 

1 I ~ e -  ao~ dF(7), Fm(e) = -1----s ~ 
do 
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and that handled by the LS with distribution of  e given by 

a f o  
Fl(c ) = -~ (1 - e-a~ 

Mixing of these traces with mixing weights I - d and d, respectively, yields the distri- 
bution of c in the original trace, 

F(c) = (1 - d)Fm(C) + dFt(c) ,  (3.18) 

i.e. the mixing weights are proportional to v - b and b. 
In the derivation of the relations (3.13) and (3.14) the interaction of the various pages 

in the LS has been taken into account by introducing the factor do. There is, however, 
another way to take this effect into account. 

From the results of the Markov chain model it is seen that the density of the concentration 
c in the original trace and the trace offered to the MS is reduced by a factor proportional to 

e-aL (3.19) 

The exponential type of this factor is evidently characteristic for the LRU procedure, 
however, to take account of the interaction of the pages in the LS the factor d in (3.19) 
has to be replaced by do, determined by (3.14). This factor d represents the compression, 
however, since always b pages should be present in the LS there is no need to reserve room 
for them in the MS, so that the actual compression is equal to b/(v - b) = d/(1 - d). 

Hence, on behalf of (3.12), we might determine the page fault probability from 

ot = E(ee-aC/O-a)) .  (3.20) 

Yet another way of reasoning is that, if ~/~ is the page fault probability, only room should 
be reserved in the MS for v - (1 - ~)v pages, so that the actual compression is 

b 1 

~v 0~ 

and hence of behalf of (3.12) 

ct = E(ce-(ac/~)). (3.21) 

E x a m p l e  3.3. I f  F(c)  = 1 - e -c then c~ = (1 - d) 2, according to (3.20), so that we get 
the same value for the page fault probability as calculated according to (3.13) and (3.14) 
(cf. example 3.1). 

If  we apply (3.21) then 

1 

(1 + d/oO 2 ' 

so that 

~2 _ (1 - -  2 d ) ~  + d 2 = O. 
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Therefore 

1 - 2 d +  ~/1 - 4d 
= = l - 2 d - d  z+o(d3),  d ~ O ,  

2 

which differs from (1 - d) z by 2d 2, which is small. 
Obviously the relation (3.20) is the easier one for calculation. Similarly, as before, we 

can determine the distributions of the concentration of the traces, which are handled by 
the MS and by the LS, for the case, which led to relation (3.20), as well as for the case, 
which yielded (3.21), and consider the original trace as a mixing of these traces. However, 
the mixing weights do not have such an intuitive meaning as before. Moreover, the relations 
(3.13) and (3.14) merit preference over (3.20) and (3.21), since for 

F(c)=O for c <  1, 

= 1  for c > l ,  

it follows from (3.13) and (3.14) that 

~ = l - d ,  

which is evidently the true value of ~/e, as it follows from symmetry. From (3.20) and also 
from (3.21), however, we obtain 

o:= 1 -  d + o(d 2) for d ~ 0 .  

Finally it is noted that (3.13) and (3.14) show that the derivative of d with respect to do 
is equal to c~, a property which is useful in obtaining numerical results. 

3.3. The FIFO procedure 

As in Section 3.2 we consider a Markov chain with state space consisting of b + 1 states 
E1 . . . . .  Eb+l, see Figure 5. 

E I E 2 E 3 E b Eb+ I 

0 
P 

Figure 5. 

The one-step transition probabilities p~ are given by 

p~j = p ,  i = j ,  i =  1 , . . . ,b;  

= l - p ,  i = j = b + l ;  

= l - p , j = i + l ,  i = 1  . . . . .  b; 

= p ,  i = b +  1, j =  1; 

= 0, elsewhere; 

(3.22) 
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with 0 < p < 1. Evidently, this Markov chain has a stationary distribution uj, j --- 1, . . . ,  

b + I, which is found to be 

P 
u j -  l + ( b -  1)p'  j = l , . . . , b ;  

(3.23) 
1 - p  

- 1 + ( b -  1 ) p '  j = b + l .  

As in Section 3.2 the states E1 . . . . .  E b correspond with the b positions for pages in the LS. 
From that section and the description of the FIFO procedure in Section 3.1 it is readily 
seen that this Markov chain may be used to describe in an approximative sense the motion 
of a page through the LS in the case of the FIFO procedure. For  this model it is seen from 
(3.23) that the probability that the next page to be processed is page i and that page i 
causes a page fault is given by 

Pi( 1 - P 3  

1 + ( b -  1)p,' 

and hence the page fault probability is given by 

v pi(1 - P0 
�9 

a = , =  l + ( ~ - - - ~ p  i 
(3.24) 

g=i=--]ffl 1 -  1 + i b - - - 1 ) p  i 

The average number 9 of  pages in the LS is given by 

bpi =E=I 
i= 1 + ( b -  1)p~' 

obviously 

g < b .  

(3.25) 

(3.26) 

To compensate the fact that # < b, we introduce as before a fictitious LS-capacity b o 
defined by 

0 

b = Z bo P~ (3.27) 
i=I 1 + ( b  o -  1)p i '  

and calculate the page fault probability from 

v p,(1  - Pi) 
~ =  ~2 

~=a 1 + ( b  o -  1)p i 
(3.28) 

With Xh, 

d = 

ch, qh, d and d o as defined before (cf. (3.9)) we obtain 

(1 - ch/v) 
XhCh 

h=l 1 + (b o - 1)Ch/V 

n Ch 
Xh 

h=l 1 + (bo - 1)cn/v " 

(3.29) 
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For v ~ oo it follows 

a = E  1 e ' 

( + - ~ - o e )  1 '  = _ E (  1 ) d = d ~  1 l + d o e  

= r :, 

(3.30) 

(3.31) 

from which it follows 

a = E  I 

The traffic offered to the MS is given by 

f 
oo C 

= dF(c), 
o l + d o c  

(3.32) 

(3.33) 

and that handled by the LS is 

f ~  doc dF(c) do~. (3.34) 
l - e =  c l + d o e  

With Fro(c) and F~(c) as defined in the previous section we have 

1;/, 
Fro(c) = 1--~- ~ 1 + do----~ dF(y), (3.35) 

lfo do7 F~(c) = -d 1 +doy dF(~,). (3.36) 

Mixing of the trace offered to the MS and that handled by the LS with mixing weights 
1 - d and d, respectively, yields again the distribution F(c) of the concentration e of the 
original trace 

F(c) = (1 - d)F~(c) + dFz(c). (3.37) 

Just like in the preceding section, where the formulas (3.20) and (3.21) have been derived 
to take into account the interaction of the pages in the LS, we obtain here for the FIFO 
procedure 

and 

~ E ( .  

Note that the 

c ) (3.38) 
1 + de/(c~- 1) ' 

last relation is identical with (3.32). 

(3.39) 
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3.4. The RO procedure 

Again we consider a Markov  chain with state space consisting of b + 1 states El,  . . . ,  Eb+ 1, 
see Figure 6. 

E 1 E 2 E~ Eb Eb+ 1 

Figure 6, 

The one-step transition probabilities are given by 

P i j =  1 - ( l - p ) / b ,  i = j ,  

= l - p ,  i = j = b + l ;  

= (~ - p ) / b ,  y = b + I, 

= p / b ,  

= 0, elsewhere; 

i = 1  . . . . .  b; 

i = i . . . . .  b; 

j =  1 . . . . .  b;  

with 0 < p < 1. This Markov  chain has a stationary distribution uj, j = 1, . . . ,  b + 1, 
which is given by 

P 
u j -  1 _ ,  j = l  . . . .  , b ,  

1 + (b l )p 

1 - p  

1 + ( b -  1)p' 
j = b + l .  

Obviously this stationary distribution is identical with that of  the Markov  chain for the 
F IFO procedure. Consequerrtly, al! results obtained for  the F IFO procedure in the preceding 
section apply also for the Random Out procedure. 

3.5. The vector Markov chain 

Consider a b-component vector Markov chain 2,, n = 1, 2 . . . .  with stationary transition 
probabilities. The state space S (~ of every component  x~ ~ of the vector 

d e [  e ( I t )  

is the set of  integers 1 . . . . .  v for i = 1 . . . . .  b. The state space S of 2, is the subset of  the 
product space of S (1) . . . . .  S (b), such that no two components of  )7, are equal. Hence S 
contains v !/(v - b)! different states. 
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The one-step transition probabilities are defined 

def 
p~j = P r{2 .+ l  = ] 1 2 .  = 7}, for  any ~ a n d ]  ~ S. 

This Markov  chain is used to describe the mot ion  of  pages in the storage hierarchy as 

follows. The content  of  the LS is described by the vector i = (i (x) . . . . .  i~b)), where the k-th 
component  denotes the number  of  the page that  occupies place k in the LS. 

A page demand corresponds with a state transition. The matrix o f  transition probabilities 

therefore depends on the replacement procedure o f  the storage hierarchy and will be 

specified below for  the LRU,  F I F O  and RO procedures. 

i. The L R U  procedure. 

P r{s  = (i (k), i ~  . . . . .  i (k-a) ,  i(k+l) . . . . .  i(b))lff. = 7} = Pi(~) for k = 1 . . . .  , b; (3.40) 

Pr{2.+~ = (i (k), i (~) . . . . .  i(b-~))12. = 7} = p~(~) for k = b + 1 . . . . .  v; (3.41) 

p~j = 0 for  other 7 and ] ~ S. 

ii. The F I F O  procedure. 

Pr{Y.+I = ~12. = 7} =Pi(~) for  k = 1 . . . . .  b;  

Pr{2.+ 1 = (i (k), i 0 )  . . . . .  i tb-1))12n = 7} =Pi(~) for  k = b + 1 . . . .  , v; 

P~i = 0 for  all other 7 and ] e S. 

(3.42) 

(3.43) 

iii. The RO procedure. 

P r{s  = ~12,, = 7} = p~(~) for k = 1 . . . . .  b;  
1 

pr{~7.+l = (i(k), iO) . . . . .  /(j-a),  i(j+l) . . . . .  i(b))12. = 7} = -ffPi(~) 

f o r k = b +  1 . . . . .  r a n d  j =  1 . . . . .  b; 

P~i = 0 for  other 7 and j e S. 

(3.44) 

(3.45) 

Applying this model we take the actual value o f  the transition probabil i ty Pi(~) equal to the 

frequency of  occurrence o f  page i (~) in the program trace. 
As the state space S is finite and the Markov  chain is irreducible and aperiodic it is an 

ergodic chain. Hence, there exists a unique stationary distribution, which we denote in 

the following way:  

u(7)% f lim Pr{2.  = 7}, (3.46)  

where again " /=  @1) . . . . .  i(b)). 

The norming condit ion reads 

u(7)  = 1. 
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3.6.  The  e x a c t  f o r m u l a s  f o r  the p a g e  f a u l t  p r o b a b i l i t y  

By means of the one-step transition probabilities for the vector Markov chain the equi- 
librium equations of state can easily be constructed. Of course they are different for the 
various replacement procedures. 

i. The LRU procedure. 
Expressed in terms of (3.46) the equations of state read 

b - 1  

((1 -Pi(~)u(~ = P i ~  ~ u(i(2), . . . ,  i(J), i(1), i (]+l) ,  . . . ,  iCb)) + 
j = 2  

v 

+ ~ u(i (z) . . . . .  i (b), i (j)) for every 7 E S. 
j = b + l  

The solution of (3.47) for ~ e S reads 

(3.47) 

pf(1) pf(2) pf(b- i )  

u ( ~  - - -  . . .  Pi(b,. (3,48) 
1 - Pi(1) 1 - pi(i~ - p~(2~ 1 - P i m  - . . .  - Picb-l~ 

For sake of simplicity a derivation of this solution is deleted, but it is easily verified by 
substitution that (3.48) satisfies (3,47) and the norming condition. This solution has been 
also obtained in [5], see also [6]. 

ii. The FIFO procedure. 
In this case the system of equations of state for i e S reads 

t~ v 

Pi~)u(~) = P i m  ~ ,  u( i  (z) . . . . .  i fb), ifJ))- 
j = b + l  j = b +  l 

The stationary distribution u(~) is presented by 

b 

u ( ~  = C l-I pic~), 7 e S ,  
j = l  

with C being determined by the norming condition. 

(3.49) 

(3.50) 

iii. The RO procedure. 
The equations of state for 7 e S are 

b 1 
U("i) "~ j= l ~-~ Pi(J)u('i) -'}- b-k=b~+ 1 u(i(1) . . . . .  i(J-1)' i(J + l )' "" "' i(b)' i(k))" (3.51) 

The solution is the same as that for the FIFO procedure. 
A page fault occurs when a page to be processed is not in the LS. The probability M k that 

page k is not in the LS is presented by 

b 

M k  = Z ~ u(7). (3.52) 
./=1 i(J)=l,~k 
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The page fault probability e therefore is expressed by 

1) 

O~ = ~ pkMk. (3.53) 
k = ! .  

The expressions (3.52) and (3.53) are hard to evaluate, even for simple distributions of the 

page frequency p~. However these simple cases can be used to evaluate the accuracy of the 

results of the approximative method by comparing them with those of the exact one. 

3.7. Comparison o f  exact  and approximative methods 

In the following ee and ~a denote the page fault probabilities determined according to the 

exact and approximative method respectively. 

Two cases are considered; the formulas (3.6), (3.7), (3.27) and (3.28) are used for the 

evaluation of ~a and the formulas (3.48), (3.50), (3.52) and (3.53) for that of c~ e. 

i. All v pages have equal page frequency p. Using the fact that vp = 1 it follows that 

o~ e = O~ a = 1 - bp for LRU, FIFO and RO. 

Hence the approximative method gives exact results in this case. 

ii. One page has a frequency Pl and v - 1 pages have a frequency P2 and pl  >> P2- This 
case is very unfavourable for the approximative method, since many empty places are 

introduced in the LS (see Section 3.2). 
Numerical results for the LRU procedure are listed in the table below. 

v = 100 pl = 0.5 p~ = 0.9 
p2 = 0.00505 p2 = 0.00101 

b 68 ~ 68 ~ 

2 0.61806 0.58938 0.10790 0.09899 
4 0.51484 0.49203 0.09706 0.09697 
8 0.46632 0.46467 0.09293 0.09293 
16 0.42425 0.42424 

v=400 P1=0.5 P1=0.9 
P2 = 0.00125 P2 = 0.00025 

2 0.62328 0.59423 0.10873 0.09975 
4 0.52718 0.50377 0.09934 0.09925 
8 0.49311 0.49126 0.09825 0.09825 
16 0.48121 0.48120 

It is seen that the relative error of the approximation depends on the value of pl  as well 
as of b, being much smaller for the larger values of b and smaller for the smaller values 
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ofp  ~, as it could be expected. I t  has already been said that the cases considered in the table are 
unfavourable for the accuracy of the approximative method. However, the results obtained 

show that the approximative method leads to extremely good results and it will be even 
better for less unfavourable cases, like: "10 per cent of  the v pages have a cumulative 
frequency of about 0.9 in the trace", which often occurs in practice. 

3.8. Application to an operating system 

The method for the determination of the page fault probability has been used for the 
calculation of the performance of a mult iprogramming system (MPS), developed by 
Philips-Electrologica and the results have been compared with those obtained by measure- 

ments. 
The operating system uses core memory  as LS and a disk as MS. A part  of  the system 

is resident in core and does not need to be considered further. A fixed number b of pages 

in core is used as virtual storage for 200 pages of lk  octads of the operating system. Page 
swaps occur on demand from disk to memory by means of the L R U  procedure. 

The question is which influence b has on the performance of the system, as this number 
can be chosen at "system generation time". To answer this question we make use of the 
page frequencies of  the 200 pages, obtained by means of software measurements, see [4]. 
The pages are divided into five groups and the page frequencies of  the pages of  each group 

are taken equal to the average page frequency of that group. 
The results are approximately as follows. 

Group  i Number  of  pages p~ (page frequency) 

1 4 0.100 

2 4 0.050 
3 6 0.025 
4 6 0.012 
5 180 0.001 

By means of the described approximative method the page fault probability has been 
determined for various values of  the memory  capacity b. As the MPS was made I/O- 

bound the run time of a batch of jobs is directly dependent on the page fault probability, 
viz. the additional run time needed because of the page swaps is equal to the product of  c~ 
and the access time for disk. Hence, the curve for the run times as a function of  b is, apart  

f rom a scale transformation, the same as the one for c~ as a function of b. This observation 
makes it possible to compare the analytical results with those from measured run times. 

In Figure 7 the curve represents results obtained by the analytic method; the crosses 
are results from measurement, see [4]. I t  is seen that the analytic method leads to a very 
good description of the actual performance. 
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4.  Conc lus ion  

In the preceding sections some models for storage hierarchy have been exposed and in- 
vestigated. From the results, which are obtained so far, we conclude that the proposed 
approach of the problem is very useful. However, a number of questions and problems are 
encountered in practice, which are worthwhile to mention and which need further investi- 
gation. 

i. The determination of  the value v can be rather intricate in practical cases. Presumably, 
v should be taken equal to the number of separate pages in the trace to be processed. 
However, for large main storages the ,,working set" concept of Denning [2] should be 
applied. The size of v is then a fraction of the total number of pages in the main storage. 

ii. The assumption that all separate pages are processed independent of one another is 
surely not true. The error made due to this assumption is negligeable if the number of 
dependent separate pages in the trace is smaller than the number of pages in the local store 
(However, further information and study of this point is desirable). 

iii. I f  instead of a two level hierarchy a three level hierarchy is applied the method developed 
may be refined to analyse this situation. Some numerical studies for a three level hierarchy 
are desirable. 
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To  get more  insight in the nature o f  the traces some additional research should be made,  e.g. 

i. I t  is extremely desirable to  study the page fault probabil i ty for  various distributions F(c) 

of  the concentrat ion.  Fo r  instance for  

a. F(c) = 1 - e -~"14)c2, c > 0; 

b. F (c )=  1 - e  -kc~, c > 0 ;  

with k determined by ~ cdF(c) = 1, i.e. k = (4!)+; 

1 
c. F ( c ) = l  ( l + 6 c f ' w i t h f ( v -  1 ) = 1 ,  V >  1. 

ii. Mixing and demixing should be studied. Fo r  instance if  two traces with distributions 

Fl(c ) and F2(c) are given with 

~a = E(ele j, d 1 = 1 - for  Fl(c), 

~2 = E(e2e-d~ dz = 1 - E ( e  - d ~  for  F2(c ), 

and if these traces are mixed with mixing weights p~ and P2 so that  p~ + P2 = 1, 
1 > p~ > 0, what  can be said about  the relation between ~ on the one hand  and ~ ,  c~ 2 

on the other hand  if 

c~ = E(ee-d~ d = 1 - E ( e  -d~ for F(c), 

with 

F(c) = plFI(c) + p2F2(c). 

This question can be investigated by means o f  the formulas  developed in the preceding 

sections. 
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